Merge sort is a divide and conquer algorithm.
Steps to implement Merge Sort:
1) Divide the unsorted array into n partitions, each partition contains 1 element. Here the one
1) Divide the unsorted array into n partitions, each partition contains 1 element. Here the one
element is considered as sorted.
2) Repeatedly merge partitioned units to produce new sublists until there is only 1 sublist
2) Repeatedly merge partitioned units to produce new sublists until there is only 1 sublist
remaining. This will be the sorted list at the end.
Merge sort is a fast, stable sorting routine with guaranteed O(n*log(n)) efficiency.
When sorting arrays, merge sort requires additional scratch space proportional to
the size of the input array. Merge sort is relatively simple to code and offers performance
typically only slightly below that of quicksort.
package com.kundan; public class MergeSort { private int[] array; private int[] tempMergArr; private int length; public static void main(String a[]){ int[] inputArr = {45,23,11,89,77,98,4,28,65,43}; MergeSort ms = new MergeSort(); ms.sort(inputArr); for(int i:inputArr){ System.out.print(i); System.out.print(" "); } } public void sort(int inputArr[]) { this.array = inputArr; this.length = inputArr.length; this.tempMergArr = new int[length]; doMergeSort(0, length - 1); } private void doMergeSort(int lowerIndex, int higherIndex) { if (lowerIndex < higherIndex) { int middle = lowerIndex + (higherIndex - lowerIndex) / 2; // Below step sorts the left side of the array doMergeSort(lowerIndex, middle); // Below step sorts the right side of the array doMergeSort(middle + 1, higherIndex); // Now merge both sides mergeParts(lowerIndex, middle, higherIndex); } } private void mergeParts(int lowerIndex, int middle, int higherIndex) { for (int i = lowerIndex; i <= higherIndex; i++) { tempMergArr[i] = array[i]; } int i = lowerIndex; int j = middle + 1; int k = lowerIndex; while (i <= middle && j <= higherIndex) { if (tempMergArr[i] <= tempMergArr[j]) { array[k] = tempMergArr[i]; i++; } else { array[k] = tempMergArr[j]; j++; } k++; } while (i <= middle) { array[k] = tempMergArr[i]; k++; i++; } } } |
Output: |
4 11 23 28 43 45 65 77 89 98 |
No comments:
Post a Comment